38. Неэвклидова геометрия. Лобачевский. Больяи. Риман.
Неевклидовы геометрии, в буквальном понимании — все геометрические системы, отличные от геометрии Евклида; однако обычно термин «Н. г.» применяется лишь к геометрическим системам (отличным от геометрии Евклида), в которых определено движение фигур, причём с той же степенью свободы, что и в геометрии Евклида.
Степень свободы движения фигур в евклидовой плоскости характеризуется тем, что каждая фигура без изменения расстояний между её точками может быть перемещена так, чтобы любая выбранная её точка заняла любое заранее назначенное положение; кроме того, каждая фигура может вращаться вокруг любой своей точки. В евклидовом трёхмерном пространстве каждая фигура может быть перемещена так, чтобы любая выбранная её точка заняла любое заранее назначенное положение; кроме того, каждая фигура может вращаться вокруг любой оси, проходящей через любую её точку. Среди Н. г. особое значение имеют Лобачевского геометрия и Римана геометрия, которые чаще всего и подразумевают, когда говорят о Н. г. Геометрия Лобачевского — первая геометрическая система, отличная от геометрии Евклида, и первая более общая теория (включающая евклидову геометрию как предельный случай). Геометрия Римана, открытая позднее, в некоторых отношениях противоположна геометрии Лобачевского, но вместе с тем служит ей необходимым дополнением. Совместное исследование геометрий Евклида (см. Евклидова геометрия), Лобачевского и Римана позволило в должной мере выяснить особенности каждой из них, а также их связи друг с другом и с другими геометрическими системами. Ниже обе Н. г. и геометрия Евклида сопоставляются как синтетические теории, затем в плане дифференциальной геометрии и, наконец, в виде проективных моделей. Н. г. как синтетические теории. Геометрия Лобачевского строится на основе тех же аксиом, что и евклидова, за исключением только одной аксиомы о параллельных. Именно, согласно аксиоме о параллельных евклидовой геометрии, через точку, не лежащую на данной прямой а, проходит только одна прямая, которая лежит в одной плоскости с прямой а и не пересекает эту прямую; в геометрии Лобачевского принимается, что таких прямых несколько (затем доказывается, что их бесконечно много).В геометрии Римана принимается аксиома: каждая прямая, лежащая в одной плоскости с данной прямой, пересекает эту прямую. Эта аксиома противоречит системе аксиом евклидовой геометрии с исключением аксиомы о параллельных. Т. о., система аксиом, лежащая в основе геометрии Римана, необходимо должна отличаться от системы аксиом евклидовой геометрии не только заменой одной аксиомы о параллельных другим утверждением, но и в части остальных аксиом. Различными в этих геометриях являются аксиомы, которые служат для обоснования так называемых отношений порядка геометрических элементов. Сущность в следующем: в евклидовой геометрии и в геометрии Лобачевского порядок точек на прямой является линейным, т. е. подобным порядку в множестве действительных чисел; в геометрии Римана порядок точек на прямой является циклическим, т. е. подобным порядку в множестве точек на окружности. Кроме того, в геометриях Евклида и Лобачевского каждая прямая, лежащая в данной плоскости, разделяет эту плоскость на две части; в геометрии Римана прямая не разделяет плоскость на две части, т. е. любые две точки плоскости, не лежащие на данной прямой, можно соединить в этой плоскости непрерывной дугой, не пересекая данную прямую (топологической моделью плоскости Римана служит проективная плоскость). Требования аксиом, определяющих движение фигур, для всех трёх геометрий одинаковы.Примеры теорем Н. г.
1) В геометрии Лобачевского сумма внутренних углов любого треугольника меньше двух прямых; в геометрии Римана эта сумма больше двух прямых (в евклидовой геометрии она равна двум прямым).
2) В геометрии Лобачевского площадь треугольника выражается формулой:
S = R2(p - a - b - g), (1)
где a, b, g — внутренние углы треугольника, R — некоторая постоянная, которая определяется выбором единицы измерения площадей. В геометрии Римана имеет место формула:
S = R2(a + b + g - p) (2)
при аналогичном значении символов (в евклидовой геометрии зависимости между площадью треугольника и суммой его углов нет).
3) В геометрии Лобачевского между сторонами и углами треугольника существует ряд зависимостей, например
где sh, ch — гиперболические синус и косинус (см. Гиперболические функции), a, b, c — стороны треугольника, a, b, g — противолежащие им углы, R — постоянная, определяемая выбором масштаба; для прямоугольного треугольника (с гипотенузой с и прямым углом ) имеет место, например, равенство:
При некотором согласовании линейного масштаба и единицы измерения площадей постоянная R в формулах (1), (3), (4) будет одинаковой. Число R называется радиусом кривизны плоскости (или пространства) Лобачевского. Число R при данном масштабе выражает определённый отрезок в плоскости (пространстве) Лобачевского, который также называют радиусом кривизны. Если масштаб меняется, то меняется число R, но радиус кривизны, как отрезок, остаётся неизменным. Если радиус кривизны принять за масштабный отрезок, то R = 1. В геометрии Римана существуют сходные равенства:
(для произвольного треугольника) и
(для прямоугольного) при аналогичном значении символов. Число R называют радиусом кривизны плоскости (или пространства) Римана. Как видно из формул (4) и (6), в каждой из Н. г. гипотенуза прямоугольного треугольника определяется его углами; более того, в Н. г. стороны любого треугольника определяются его углами, т. е. не существует подобных треугольников, кроме равных. В евклидовой геометрии нет формул, аналогичных формулам (4) и (6), и нет никаких др. формул, выражающих линейные величины через угловые. При замене R на Ri
формулы (1), (3), (4) превращаются в формулы (2), (5), (6); вообще, при замене R на Ri все метрические формулы геометрии Лобачевского (сохраняющие при этой замене геометрический смысл) переходят в соответствующие формулы геометрии Римана.
При R и те и другие дают в пределе формулы евклидовой геометрии (либо теряют смысл). Стремление к бесконечности величины R означает, что масштабный отрезок является бесконечно малым по сравнению с радиусом кривизны (как с отрезком). То обстоятельство, что при этом формулы Н. г. переходят в пределе в формулы евклидовой геометрии, означает, что для малых (по сравнению с радиусом кривизны) неевклидовых фигур соотношения между их элементами мало отличны от евклидовых.Н. г. в плане дифференциальной геометрии. В каждой из Н. г. дифференциальные свойства плоскости аналогичны дифференциальным свойствам поверхностей евклидова пространства (см. Дифференциальная геометрия); в неевклидовой плоскости могут быть введены внутренние координаты u, v, так что дифференциал ds дуги кривой, соответствующий дифференциалам du, dv координат, определяется равенством:
ds2 = Edu2 + 2Fdudv + Gdv2 (7)
Пусть, в частности, в качестве координаты u произвольной точки М берётся длина перпендикуляра, опущенного из М на фиксированную прямую, а в качестве координаты v — расстояние от фиксированной точки О этой прямой до основания указанного перпендикуляра; величины u, v следует брать со знаком, подобно обычным декартовым координатам. Тогда формула (7) для плоскости Лобачевского будет иметь вид:
а для плоскости Римана
R — та же постоянная, которая входит в формулы предыдущего раздела (радиус кривизны). Правые части (8) и (9) суть метрические формы поверхностей евклидова пространства, имеющих соответственно постоянную отрицательную кривизну К = — 1/R2 (как, например, псевдосфера) и постоянную положительную кривизну К = 1/R2 (как, например, сфера). Поэтому внутренняя геометрия достаточно малой части плоскости Лобачевского совпадает с внутренней геометрией на соответствующей части поверхности постоянной отрицательной кривизны.
Аналогично, внутренняя геометрия достаточно малых частей плоскости Римана реализуется на поверхностях постоянной положительной кривизны (поверхностей, которые реализуют геометрию всей плоскости Лобачевского, в евклидовом пространстве нет). При замене R на Ri метрическая форма (8) переходит в метрическую форму (9). Так как метрическая форма определяет внутреннюю геометрию поверхности, то при такой замене и другие метрические соотношения геометрии Лобачевского переходят в метрические соотношения геометрии Римана (что уже было отмечено выше). При R = ¥ каждое из равенств (8) и (9) даётds2 = du2 + dv2,
т. е. метрическую форму евклидовой плоскости.
Трёхмерные неевклидовы пространства по своим дифференциальным свойствам относятся к числу римановых пространств в широком смысле (см. Риманово пространство) и выделяются среди них прежде всего тем, что имеют постоянную риманову кривизну (см. Риманова геометрия). Как в двумерном, так и в трёхмерном случае постоянство кривизны обеспечивает однородность пространства, т. е. возможность движения фигур в нём, причём с той же степенью свободы, как (соответственно) на евклидовой плоскости или в евклидовом пространстве. Пространство Лобачевского имеет отрицательную кривизну, равную — 1/R2, пространство Римана — положительную кривизну, равную 1/R2 (R — радиус кривизны). Евклидово пространство занимает промежуточное положение и является пространством нулевой кривизны.
Пространства постоянной кривизны могут иметь весьма разнообразное строение в смысле топологии. Среди всех пространств постоянной отрицательной кривизны пространство Лобачевского однозначно выделяется двумя свойствами: оно полно (в смысле полноты метрического пространства), топологически эквивалентно обычному евклидову пространству. Пространство Римана среди всех пространств положительной кривизны однозначно выделяется свойством топологической эквивалентности проективному пространству. Аналогичными условиями выделяются многомерные пространства Лобачевского и Римана среди многомерных пространств постоянной римановой кривизны.
Н. г. в виде проективных моделей. Пусть на проективной плоскости введены проективные однородные координаты (x1, x2, x3) и задана некоторая овальная линия второго порядка, обозначаемая дальше буквой k, например
x12 + x22 + x32 = 0
Каждое проективное отображение проективной плоскости на себя, которое оставляет на месте линию k, называется автоморфизмом относительно k. Каждый автоморфизм отображает внутренние точки линии k также во внутренние её точки. Множество всех автоморфизмов относительно линии k составляет группу. Пусть рассматриваются только точки проективной плоскости, лежащие внутри k; хорды линии k называются «прямыми». Две фигуры пусть считаются равными, если одна из них переводится в другую некоторым автоморфизмом. Так как автоморфизмы составляют группу, то имеют место основные свойства равенства фигур: если фигура А равна фигуре В, то В равна А; если фигура А равна фигуре В, а В равна фигуре С, то А. равна С. В получаемой т. о. геометрические теории будут соблюдены требования всех аксиом евклидовой геометрии, кроме аксиомы о параллельных: вместо этой последней аксиомы соблюдается аксиома о параллельных Лобачевского (см. рисунок, где показано, что через точку Р проходит бесконечно много «прямых», не пересекающих «прямой» а). Тем самым получается истолкование (двумерной) геометрии Лобачевского при помощи объектов проективной плоскости или, как говорят, проективная модель геометрии Лобачевского; линию k называют абсолютом этой модели. Автоморфизмы относительно k играют роль движений. Поэтому геометрию Лобачевского можно рассматривать как теорию, изучающую свойства фигур и связанные с фигурами величины, которые остаются неизменными при автоморфизмах; короче говоря, геометрию Лобачевского можно рассматривать как теорию инвариантов группы автоморфизмов относительно овального абсолюта.
Геометрия Римана (двумерная) допускает сходное истолкование; именно она является теорией инвариантов относительно нулевого абсолюта
x12 + x22 + x32 = 0. (10)
При этом в качестве точек и прямых модели берутся все точки и прямые проективной плоскости; автоморфизмы определяются чисто алгебраически как линейные преобразования, которые переводят уравнение (10) в уравнение того же вида.
Евклидову геометрию также можно рассматривать как теорию инвариантов некоторой группы проективных преобразований, именно, группы автоморфизмов относительно вырожденного абсолюта
x12 + x22 = 0, x3 = 0,
т. е. относительно мнимых точек (1, i, 0), (1, —i, 0); эти точки называют круговыми точками. Предметом модели являются все точки проективной плоскости, кроме точек прямой x3 = 0, и все прямые проективной плоскости, кроме прямой x3 = 0. В последнем случае автоморфизмы играют роль подобных преобразований, а не движений, как в случае Н. г.
Рассмотренные модели относятся к двумерным геометриям; проективные модели высших размерностей строятся аналогично.
Соответственно характеру уравнений абсолютов, геометрия Лобачевского называется гиперболической, геометрия Римана — эллиптической, геометрия Евклида — параболической.
Н. г. имеют существенные приложения в математике (теории аналитических функций, теории групп и др.) и смежных с нею областях (например, в теории относительности). Эти приложения основаны на том, что разнообразные конкретные модели Н. г. связаны с различными объектами и понятиями указанных разделов математики и смежных с нею областей.
Лобачевский Николай Иванович [20.11(1.12).1792, Нижний Новгород, ныне г. Горький, — 12 (24).2.1856, Казань], русский математик, создатель неевклидовой геометрии, мыслитель-материалист, деятель университетского образования и народного просвещения. Родился в семье мелкого чиновника. Почти всю жизнь Л. провёл в Казани. Там он учился в гимназии (1802—07) на казённом содержании, затем в Казанском университете (1807—11). Рано обнаружил выдающиеся способности, по окончании университета получил степень магистра (1811) и был оставлен при университете; в 1814 стал адъюнктом, в 1816 — экстраординарным и в 1822 — ординарным профессором. Несмотря на реакционную обстановку, сложившуюся в годы попечительства М. Л. Магницкого, Л. вёл напряжённую научную и педагогическую работу (преподавал математику, физику и астрономию), закупил в столице оборудование для физического кабинета и книги для библиотеки, а затем возглавлял её 10 лет (с 1825); Л. заведовал обсерваторией; избирался деканом физико-математического факультета (1820—22, 1823—25). Но столкновения с попечителем обострились: Л. отстаивал в преподавании научные материалистические взгляды. В эти годы Л. отыскивал пути строгого построения начал геометрии. Сохранились: студенческие записи его лекций (от 1817), где им делалась попытка доказать постулат параллельности Евклида, но в рукописи учебника «Геометрия» (1823) он уже отказался от этой попытки. В «Обозрениях преподавания чистой математики» на 1822/23 и 1824/25 Л. указал на «до сих пор непобедимую» трудность проблемы параллелизма и на необходимость принимать в геометрии в качестве исходных понятия, непосредственно приобретаемые из природы. Наконец, преодолев тысячелетние традиции, он приходит к созданию новой геометрии — так называемой геометрии Лобачевского. 7 февраля 1826 он представил для напечатания в Записках физико-математического отделения сочинение: «Сжатое изложение начал геометрии со строгим доказательством теоремы о параллельных» (на французском языке). 11 февраля оно было рассмотрено и назначены рецензенты. Сам Л. указывал, что он читал это рассуждение на заседании отделения 12 февраля. Но издание не осуществилось. Рукопись и отзывы не сохранились, однако само сочинение было включено Л. в его труд «О началах геометрии» в журнале «Казанский вестник» (1829—30), явившийся первой в мировой литературе публикацией по неевклидовой геометрии. Исходя из поисков безусловной строгости и ясности в началах геометрии, Л. рассматривает аксиому параллельности Евклида как произвольное ограничение, как требование слишком жёсткое, ограничивающее возможности теории, описывающей свойства пространства. Он заменяет эту аксиому требованием более широким и общим, именно: на плоскости через точку, не лежащую на данной прямой, проходит более чем одна прямая, не пересекающая данную (по существу не менее чем одна, если учесть предельный случай).
Разработанная Л. новая геометрия существенно отличается от евклидовой геометрии, но при больших значениях входящей в формулы некоторой постоянной R (радиус кривизны пространства) отклонение становится незначительным (см. Лобачевского геометрия).
В соответствии со своим материалистическим подходом к изучению природы, Л. полагал, что только научный опыт может выявить, какая из геометрий осуществляется в физическом пространстве. Используя новейшие астрономические данные того времени, он пришёл к выводу, что число R очень велико и отклонения от евклидовой геометрии если и существуют, то заключены в пределах ошибок измерений. Т. о., была обоснована практическая пригодность евклидовой геометрии. Кроме того, Л. показал, как его геометрию можно применять в др. разделах математики, а именно в математическом анализе при вычислении определённых интегралов.
Доклад Л. совпал по времени с увольнением Магницкого. Л. был высоко оценен новым попечителем — М. Н. Мусиным-Пушкиным. Л. избрали ректором (1827) и за 19 лет руководства университетом он добился его подлинного расцвета. Программа деятельности Л. отражена в его замечательной речи «О важнейших предметах воспитания» (1828, опубликована 1832), в которой обрисован идеал гармонического развития личности, подчёркнуто общественное значение воспитания и образования, освещена роль наук и долг учёного перед страной и народом.
В бытность Л. ректором было осуществлено в 1832—40 строительство целого комплекса вспомогательных зданий: библиотека, астрономическая обсерватория, физический кабинет и химическая лаборатория, анатомический театр, клиника и др. Он положил начало «Учёным запискам Казанского университета» (1834) и развил издательскую деятельность. Уровень научно-учебной работы повысился, контингент студентов возрос. университет стал важным центром востоковедения. Немало сил Л. вкладывал и в улучшение постановки преподавания в гимназиях и училищах округа. В моменты стихийных бедствий (эпидемия холеры в 1830, пожар Казани в 1842) особенно ярко проявилась его забота об университете. Но ректорство не отрывало Л. от преподавания: в разные годы он читал лекции по аналитической механике, гидромеханике, интегральному исчислению, дифференциальным уравнениям, математической физике, вариационному исчислению, а в 1838—40 — научно-популярные лекции по физике для населения. Студенты высоко ценили лекции Л.
Однако научные идеи Л. не были поняты современниками. Его труд «О началах геометрии», представленный в 1832 советом университета в Академию наук, получил у М. В. Остроградского отрицательную оценку, а в 1834 в реакции журнала «Сын отечества» появилась анонимная издевательская статейка. Но Л. не прекратил разработки своей геометрии. Его работы появлялись в 1835—38, а в 1840 в Германии вышла его книга «Геометрические исследования» (на немецком языке). Эта стойкая борьба за научную истину отличает Л. от двух его современников, тоже пришедших к открытию неевклидовой геометрии. Венгерский математик Я. Больяй опубликовал свой труд позднее Л. (1832). Не встретив поддержки у современников, он не продолжил исследований. Немецкий математик К. Ф. Гаусс также владел началами неевклидовой геометрии. Но из опасения встретить непонимание Гаусс не разрабатывал их далее и не опубликовал. Однако, не высказываясь в печати, он высоко оценил труды Л., и по его предложению Л. был в 1842 избран членом-корреспондентом Гёттингенского учёного общества.
Л. получил ряд ценных результатов и в др. разделах математики: так, в алгебре он разработал новый метод приближённого решения уравнений (Лобачевского метод), в математическом анализе получил ряд тонких теорем о тригонометрических рядах, уточнил понятие непрерывной функции и др.
В 1846 Л. оказался фактически отстранённым от университета. Он был назначен помощником нового попечителя (без оплаты) и лишён ректорства. Здоровье его пошатнулось. Но семейное горе — смерть сына, материальные затруднения и развивавшаяся слепота не могли сломить мужества Л. Последнюю работу «Пангеометрию» он создал за год до смерти, диктуя её текст.
Л. умер непризнанным. Большую роль в признании трудов Л. сыграли исследования Э. Бельтрами (1868), Ф. Клейна (1871), А. Пуанкаре (1883) и др. Казанский университет и физико-математическое общество провели большую работу по выявлению значения идей Л. и изданию его геометрических сочинений. Широкое признание пришло к 100-летнему юбилею Л. — была учреждена международная премия, в Казани открыт памятник (1896).